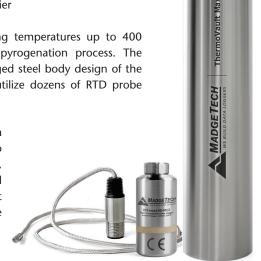
DHS DATA LOGGING SYSTEM

DRY HEAT STERILIZATION DATA LOGGING SYSTEM

Features

- 316 Stainless Steel Enclosure
- Small 1.75 inch Diameter
- Withstands temperatures up to +400 °C for 60 minutes continuously

Applications


- Extreme Temperature Monitoring
- Depyrogenation
- Dry Heat Sterilization
- Autoclave Validation

The DHS Data Logging System for Dry Heat Sterilization is an all in one depyrogenation solution that comes equipped with:

- HiTemp140-M12, High Temperature Data Logger
- 36 inch Glass Braided RTD depyrogenation probe with M12 connector and flat probe tip
- ThermoVault Max, Extreme Temperature Thermal Barrier

This system is capable of withstanding and measuring temperatures up to 400 °C, allowing it to record throughout the entire depyrogenation process. The HiTemp140-M12 data logger features the popular rugged steel body design of the HiTemp140 data logger series with the flexibility to utilize dozens of RTD probe options with M12 connection compatibility.

The MadgeTech software allows for fast and easy data logger configuration. Simply insert the data logger into the IFC400 or IFC406 docking station (sold separately), choose either immediate or delay start and the desired reading rate. Insert the data logger onto the ThermoVault Max enclosure and screw the cap back on securely. The device is ready to be deployed.

SPECIFICATIONS*

*SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. SPECIFIC WARRANTY REMEDY LIMITATIONS APPLY. CALL 1-603-456-2011 OR GO TO WWW.MADGETECH.COM FOR DETAILS.

Temperature Sensor	36 inch Glass Braided RTD depyrogenation probe
Temperature Resolution	0.0001 Ω , 0.01 °C (0.02 °F) (Probe Dependent)
Memory	43,690 readings
Reading Rate	4 readings per second up to 1 reading every 24 hours
Required Interface Package	IFC400 or IFC406
Baud Rate	125,000
Typical Battery Life	2 years typical (1 minute reading rate at +25 °C/+77 °F)

Operating Environment	Refer to the Time vs. Temperature Chart
Barrier Material	316 Stainless Steel, PTFE, Silicone
Barrier Dimensions	1.75 in OD x 9.6 in L (44.45 mm OD x 243.8 mm L)
Barrier Weight	3.0 lb (1350 g)
Approvals	CE

Time vs. Temperature Chart

Maximum Exposure
Time (air)
128 minutes
137 minutes
148 minutes
163 minutes
183 minutes
213 minutes
263 minutes
368 minutes
Indefinitely
601 minutes
468 minutes
396 minutes
348 minutes
313 minutes
286 minutes
265 minutes
247 minutes
233 minutes
220 minutes
209 minutes
200 minutes
192 minutes
184 minutes
178 minutes
172 minutes
166 minutes
161 minutes
157 minutes
153 minutes
60 minutes

DISCLAIMER & TERMS OF USE

Listed specifications can be used to determine maximum allowable exposure times for the HiTemp140 with ThermoVault Max. The barrier extends the operating temperature of the logger up to, but not exceeding, the measurement range. Please consult the measurement range of the probe for temperatures above 250 °C (482 °F).

Both the data logger and ThermoVault Max must be at ambient temperature, approximately 25 °C (77 °F) before being placed in the extreme temperature environment. Immediately following exposure to high temperature, the data logger should be removed from the ThermoVault Max, using appropriate precautions, as it could be VERY hot. Failing to remove the data logger may allow heat trapped in the ThermoVault Max to continue to heat the data logger to potentially unsafe levels.

The ThermoVault Max may take hours to fully cool down. Even if the exterior of the ThermoVault Max is cool to the touch, the interior of the barrier and its contents may still be VERY hot.

The ThermoVault Max is primarily intended for use in dry air environments, but with the addition of the TMAX Wet Seal Kit, the ThermoVault Max may also be used in liquids and steam environments.

If your application involves a ramp up to a temperature above 150 °C (302 °F) and/or any complex temperature profile that isn't a constant process, please contact MadgeTech to determine whether the HiTemp140 with ThermoVault Max is suitable for the application.

To determine if the HiTemp140 with ThermoVault Max is suitable for the application, please provide MadgeTech with a detailed description of your process, including temperatures, durations, ramp times and process media such as air, steam, oil or water. If MadgeTech is unable to definitively calculate the suitability of our product for your application, a test unit outfitted with a high temperature indicator can be provided.

ORDERING INFORMATION

MODEL	DESCRIPTION
DHS Data Logging System	HiTemp140-M12 data logger, a 36 inch flexible fiberglass insulated RTD probe, and the ThermoVault Max extreme temperature thermal barrier

For Quantity Discounts call 1-603-456-2011 or email sales@madgetech.com.

6 Warner Road · Warner, NH 03278 Phone: (603) 456-2011 · Fax: (603) 456-2012